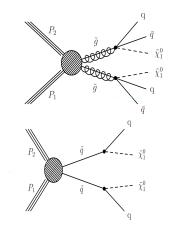
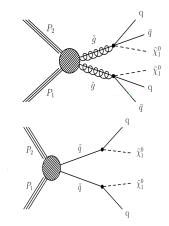
## Simplified SUSY at Lepton Colliders

Mikael Berggren<sup>1</sup>

<sup>1</sup>DESY, Hamburg

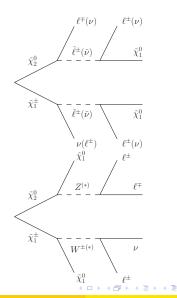

Snowmass Energy Frontier Workshop, BNL, Apr 2013

### **Outline**

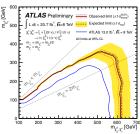

- Outline
- Simplified SUSY models at LHC
- Simplified SUSY models at ILC
- Simplified SUSY In practice: LEP
- Some results
- 6 Conclusions and Outlook

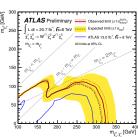


- Simplified models are (very) special cases: the produced SUSY particle goes directly to it's SM partner+MET.
- Either:
  - Production needs a gluino and/or squark in reach.
- Or: Very special spectra
  - EWKinos, sleptons.
  - 3:d gen. squarks.



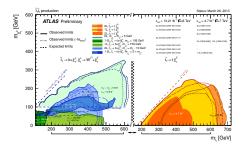

- Simplified models are (very) special cases: the produced SUSY particle goes directly to it's SM partner+MET.
- Either:
  - Production needs a gluino and/or squark in reach.
- Or: Very special spectra
   EWKinos, sleptons.
   3rd den, squarks



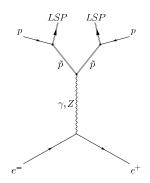


- Simplified models are (very) special cases: the produced SUSY particle goes directly to it's SM partner+MET.
- Either:
  - Production needs a gluino and/or squark in reach.
- Or: Very special spectra
  - EWKinos, sleptons.
  - 3:d gen. squarks.

- Simplified models are (very) special cases: the produced SUSY particle goes directly to it's SM partner+MET.
- Either:
  - Production needs a gluino and/or squark in reach.
- Or: Very special spectra
  - EWKinos, sleptons.
  - 3:d gen. squarks.

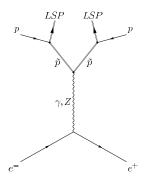



- Simplified models are (very) special cases: the produced SUSY particle goes directly to it's SM partner+MET.
- Either:
  - Production needs a gluino and/or squark in reach.
- Or: Very special spectra
  - EWKinos, sleptons.
  - 3:d gen. squarks.

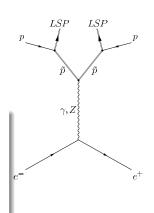




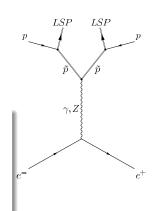




- Simplified models are (very) special cases: the produced SUSY particle goes directly to it's SM partner+MET.
- Either:
  - Production needs a gluino and/or squark in reach.
- Or: Very special spectra
  - EWKinos, sleptons.
  - 3:d gen. squarks.

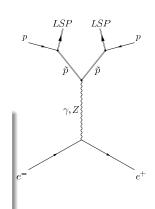



- All is known for given masses, due to SUSY-principle: "sparticles couples as particles".
- This doesn't depend on the SUSY breaking mechanism!
- Obviously: There is one NLSP.

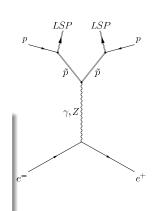



- All is known for given masses, due to SUSY-principle: "sparticles couples as particles".
- This doesn't depend on the SUSY breaking mechanism!
- Obviously: There is one NLSP.




- All is known for given masses, due to SUSY-principle: "sparticles couples as particles".
- This doesn't depend on the SUSY breaking mechanism!
- Obviously: There is one NLSP.
- Model independent exclusion/ discovery reach in M<sub>NLSP</sub> – M<sub>LSP</sub> plane.
- Repeat for all NLSP:s.
- Cover entire parameter-space in a hand-full of plots
- Cf. LEP!




- All is known for given masses, due to SUSY-principle: "sparticles couples as particles".
- This doesn't depend on the SUSY breaking mechanism!
- Obviously: There is one NLSP.
- Model independent exclusion/ discovery reach in M<sub>NLSP</sub> – M<sub>LSP</sub> plane.
- Repeat for all NLSP:s.
- Cover entire parameter-space in a hand-full of plots
- Cf. LEP!



- All is known for given masses, due to SUSY-principle: "sparticles couples as particles".
- This doesn't depend on the SUSY breaking mechanism!
- Obviously: There is one NLSP.
- Model independent exclusion/ discovery reach in M<sub>NLSP</sub> – M<sub>LSP</sub> plane.
- Repeat for all NLSP:s.
- Cover entire parameter-space in a hand-full of plots
- Cf. LEP!



- All is known for given masses, due to SUSY-principle: "sparticles couples as particles".
- This doesn't depend on the SUSY breaking mechanism!
- Obviously: There is one NLSP.
- Model independent exclusion/ discovery reach in M<sub>NLSP</sub> – M<sub>LSP</sub> plane.
- Repeat for all NLSP:s.
- Cover entire parameter-space in a hand-full of plots
- Cf. LEP!



- RPV:
  - If ∃ long-lived charged LSP: Even better
  - If ∃ long-lived neutral LSP: same as no RPV.
  - If LSP intermediate: decays in detector, also better.
  - If prompt LSP decay: More complex combinations of  $\lambda, \lambda'$  and  $\lambda''$  constrained by other observations  $\rightarrow$  lots of cases, with different signatures. Nevertheless; doable.
- Mixed sparticles:
  - sfermion NLSP: One more parameter. NB: one can't mix away  $e^+e^- \rightarrow \tilde{f}\tilde{f}$  completely: Coupling to Z might vanish, but not to  $\gamma$  (exception:  $\tilde{e}$ )
    - bosino NLSP: Back up one step and evaluate limiting
- Nerv low  $\Lambda(M)$
- Very low  $\Delta(M)$ 
  - If  $E_{CMS} >>$  threshold: boost.
  - a NI SP. Complicated if A (M)
  - many body decays. Open question is R hadrones at a second

- RPV:
  - If ∃ long-lived charged LSP: Even better
  - If ∃ long-lived neutral LSP: same as no RPV.
  - If LSP intermediate: decays in detector, also better.
  - If prompt LSP decay: More complex combinations of  $\lambda, \lambda'$  and  $\lambda''$  constrained by other observations  $\rightarrow$  lots of cases, with different signatures. Nevertheless; doable.
- Mixed sparticles:
  - sfermion NLSP: One more parameter. NB: one can't mix away  $e^+e^- \rightarrow \tilde{f}\tilde{f}$  completely: Coupling to Z might vanish, but not to  $\gamma$  (exception:  $\tilde{e}$ )
  - bosino NLSP: Back up one step and evaluate limiting cross-sections instead.
- Very low  $\Delta(M)$ 
  - $\tilde{q}$  NLSP: Complicated if  $\Delta(M) < m_q$ , but still known physics of

#### RPV:

- If ∃ long-lived charged LSP: Even better
- If ∃ long-lived neutral LSP: same as no RPV.
- If LSP intermediate: decays in detector, also better.
- If prompt LSP decay: More complex combinations of  $\lambda, \lambda'$  and  $\lambda''$  constrained by other observations  $\rightarrow$  lots of cases, with different signatures. Nevertheless; doable.
- Mixed sparticles:
  - sfermion NLSP: One more parameter. NB: one can't mix away  $e^+e^- \rightarrow \tilde{f}\tilde{f}$  completely: Coupling to Z might vanish, but not to  $\gamma$  (exception:  $\tilde{e}$ )
  - bosino NLSP: Back up one step and evaluate limiting cross-sections instead.
- Very low ∆(M)
  - ISR trick.
  - If  $E_{CMS} >>$  threshold: boost.
  - $\tilde{q}$  NLSP: Complicated if  $\Delta(M) < m_q$ , but still known physics of many-body decays. Open question is R-hadrons.

- Degeneracy, ie > 1 NLSP:
  - No problem for sleptons, sbottom, stop (separable experimentally)
- Side remark: Many open channels, ie if SUSY is main background to SUSY:
  - When data starts coming in, what is is first light?
  - How do we quickly determine a set of approximative model parameters?
  - What is then the optimal use of beam-time in such a scenario?
  - And in a staged approach ?
  - Spectrum in continuum vs. threshold-scans?
  - Special points, eq. between  $\tilde{\tau}_1\tilde{\tau}_2$  and  $\tilde{\tau}_2\tilde{\tau}_3$  thresholds
  - Clean vs. high cross-section.
  - o ...

- Degeneracy, ie > 1 NLSP:
  - No problem for sleptons, sbottom, stop (separable experimentally)
- Side remark: Many open channels, ie if SUSY is main background to SUSY:
  - When data starts coming in, what is is first light?
  - How do we quickly determine a set of approximative model parameters?
  - What is then the optimal use of beam-time in such a scenario?
  - And in a staged approach?
  - Spectrum in continuum vs. threshold-scans?
  - Special points, eg. between  $\tilde{\tau}_1 \tilde{\tau}_2$  and  $\tilde{\tau}_2 \tilde{\tau}_2$  thresholds.
  - Clean vs. high cross-section.
  - **3** ...

- "Parameter" scan:
  - Scan  $M_{NLSP} M_{LSP}$  plane.
  - $\bullet$   $\sigma$  from SUSY-principle and kinematics.
- Do FullSim in  $\mathcal{O}(a \text{ few})$  points.
- Tune FastSim to these.
- Then FastSim over a grid.
- At each point
  - Determine expected background and signal
  - Calculate significance

- "Parameter" scan:
  - Scan  $M_{NLSP} M_{LSP}$  plane.
  - $\sigma$  from SUSY-principle and kinematics.
- Do FullSim in  $\mathcal{O}(a \text{ few})$  points.
- Tune FastSim to these.
- Then FastSim over a grid.
- At each point
  - Determine expected background and signal
  - Calculate significance

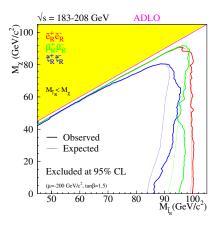
- "Parameter" scan:
  - Scan  $M_{NLSP} M_{LSP}$  plane.
  - $\sigma$  from SUSY-principle and kinematics.
- Do FullSim in  $\mathcal{O}(a \text{ few})$  points.
- Tune FastSim to these.
- Then FastSim over a grid.
- At each point
  - Determine expected background and signal
  - Calculate significance

- "Parameter" scan:
  - Scan  $M_{NLSP} M_{LSP}$  plane.
  - $\sigma$  from SUSY-principle and kinematics.
- Do FullSim in  $\mathcal{O}(a \text{ few})$  points.
- Tune FastSim to these.
- Then FastSim over a grid.
- At each point
  - Determine expected background and signal
  - Calculate significance

- "Parameter" scan:
  - Scan  $M_{NLSP} M_{LSP}$  plane.
  - $\sigma$  from SUSY-principle and kinematics.
- Do FullSim in  $\mathcal{O}(a \text{ few})$  points.
- Tune FastSim to these.
- Then FastSim over a grid.
- At each point
  - Determine expected background and signal
  - Calculate significance

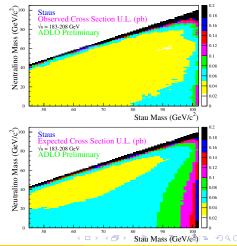
- "Parameter" scan:
  - Scan  $M_{NLSP} M_{LSP}$  plane.
  - $\sigma$  from SUSY-principle and kinematics.
- Do FullSim in  $\mathcal{O}(a \text{ few})$  points.
- Tune FastSim to these.
- Then FastSim over a grid.
- At each point
  - Determine expected background and signal

#### Then:


- If  $> 5\sigma$ : the point is within Discovery Reach.
- If  $< 5\sigma$ , but  $> 2\sigma$ : the point is within Exclusion Reach.

- See http://lepsusy. web. cern.ch/ lepsusy/
- Sleptons ...
- Squarks ...
- Bosinos ...

- Aleph squarks: What if ... ?
- Delphi staus: What if ... ?
- And so on ....


- See http://lepsusy. web. cern.ch/ lepsusy/
- Sleptons ...
- Squarks ...
- Bosinos ...

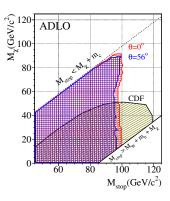
- Aleph squarks: What if ... ?
- Delphi staus: What if ... ?
- And so on ...



- See http://lepsusy. web. cern.ch/ lepsusy/
- Sleptons ...
- Squarks ...
- Bosinos ...

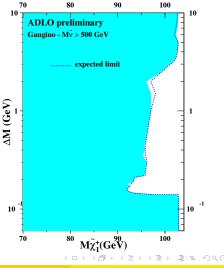
- Aleph squarks: What if ... ?
- Delphi staus: What if ... ?
- And so on ....




- See http://lepsusy. web. cern.ch/ lepsusy/
- Sleptons ...
- Squarks ...
- Bosinos ...

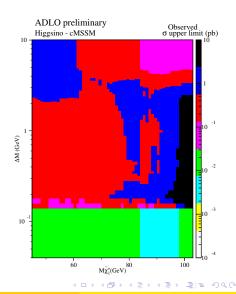
- Aleph squarks: What if ... ?
- Delphi staus: What if ... ?
- And so on ....




- See http://lepsusy. web. cern.ch/ lepsusy/
- Sleptons ...
- Squarks ...
- Bosinos ...

- Aleph squarks: What if ... ?
- Delphi staus: What if ... ?
- And so on ....




- See http://lepsusy. web. cern.ch/ lepsusy/
- Sleptons ...
- Squarks ...
- Bosinos ...

- Aleph squarks: What if ... ?
- Delphi staus: What if ... ?
- And so on ....



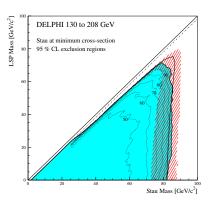
- See http://lepsusy. web. cern.ch/ lepsusy/
- Sleptons ...
- Squarks ...
- Bosinos ...

- Aleph squarks: What if ... ?
- Delphi staus: What if ... ?
- And so on ....



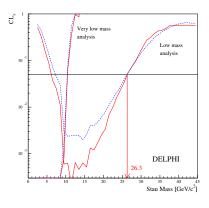

- See http://lepsusy. web. cern.ch/ lepsusy/
- Sleptons ...
- Squarks ...
- Bosinos ...

- Aleph squarks: What if ... ?
- Delphi staus: What if ... ?
- And so on ....


- See http://lepsusy. web. cern.ch/ lepsusy/
- Sleptons ...
- Squarks ...
- Bosinos ...

- Aleph squarks: What if ... ?
- Delphi staus: What if ... ?
- And so on ....




- See http://lepsusy. web. cern.ch/ lepsusy/
- Sleptons ...
- Squarks ...
- Bosinos ...

- Aleph squarks: What if ... ?
- Delphi staus: What if ... ?
- And so on ....



- See http://lepsusy. web. cern.ch/ lepsusy/
- Sleptons ...
- Squarks ...
- Bosinos ...

- Aleph squarks: What if ... ?
- Delphi staus: What if ... ?
- And so on



# In practice: LEP

- See http://lepsusy. web. cern.ch/ lepsusy/
- Sleptons ...
- Squarks ...
- Bosinos ...

These are combined results; there's more in the results of the individual experiments:

- Aleph squarks: What if ... ?
- Delphi staus: What if ... ?
- And so on ....

# In practice: LEP

- See http://lepsusy. web. cern.ch/ lepsusy/
- Sleptons ...
- Squarks ...
- Bosinos ...

## These are combined results:

#### **Bottom line:**

### VERY hard to wriggle out of this!

- Aleph squarks: What it ... ?
- Delphi staus: What if ... ?
- And so on ....

## Some results

- Example from existing FullSim and/or FastSim studies:
  - Sleptons, some bosinos in a specific point.
  - Here:  $\tilde{e}_R, \tilde{\mu}_R, \tilde{\tau}_1$ .
  - Example of the last issue many open channels.
- Use this to
  - Choose running scenario.
  - Tune FullSim and FastSim to agree ?
- ... then start scanning



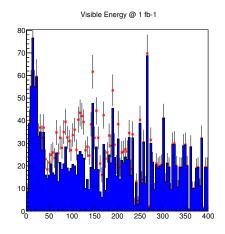


- - E<sub>vis</sub> < 400 GeV</li>
  - 2 charged particles
  - < 40% of  $E_{vis}$  < below 30
- Simple observable: E<sub>vis</sub>: Peak
- See the signal appearing after



- - E<sub>vis</sub> < 400 GeV</li>  $(=E_{CMS}-2M_{\tilde{\chi}_1^0 min LEP}).$
  - 2 charged particles
  - < 40% of E<sub>vis</sub> < below 30</li>
- Simple observable: E<sub>vis</sub>: Peak
- See the signal appearing after



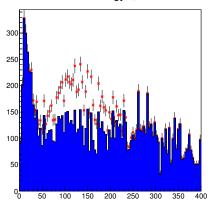

- - E<sub>vis</sub> < 400 GeV</li>  $(=E_{CMS}-2M_{\tilde{\chi}_1^0 min LEP}).$
  - 2 charged particles
  - $\bullet$  < 40% of E<sub>vis</sub> < below 30 degrees.
- Simple observable:  $E_{vis}$ : Peak
- See the signal appearing after

- - E<sub>vis</sub> < 400 GeV</li>  $(=E_{CMS}-2M_{\tilde{\chi}_1^0 min LEP}).$
  - 2 charged particles
  - $\bullet$  < 40% of E<sub>vis</sub> < below 30 degrees.
- Simple observable: E<sub>vis</sub>: Peak and width gives  $M_{\tilde{e}_{\mathbf{p}}}$  and  $M_{\tilde{\chi}_{1}^{0}}$ .
- See the signal appearing after



- - E<sub>vis</sub> < 400 GeV</li>  $(=E_{CMS}-2M_{\tilde{\chi}^0_1 min,LEP}).$
  - 2 charged particles
  - $\bullet$  < 40% of E<sub>vis</sub> < below 30 degrees.
- Simple observable:  $E_{vis}$ : Peak and width gives  $M_{\tilde{e}_{\mathbf{p}}}$  and  $M_{\tilde{\chi}_{1}^{0}}$ .
- See the signal appearing after
  - 1 fb<sup>−1</sup>
  - 5 fb<sup>−1</sup>
  - 25 fb<sup>-1</sup>

  - 250 fb<sup>-1</sup>

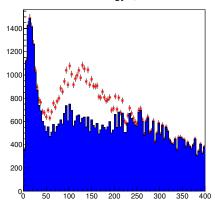





cross-section in the pb-range.
• Few simple cuts.

- - E<sub>vis</sub> < 400 GeV</li>  $(=E_{CMS}-2M_{\tilde{\chi}^0_1 min, LEP}).$
  - 2 charged particles
  - $\bullet$  < 40% of E<sub>vis</sub> < below 30 degrees.
- Simple observable: E<sub>vis</sub>: Peak and width gives  $M_{\tilde{e}_{\mathbf{p}}}$  and  $M_{\tilde{\chi}_{1}^{0}}$ .
- See the signal appearing after
  - 1 fb<sup>−1</sup>
  - 5 fb<sup>-1</sup>

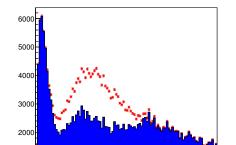
### Visible Energy @ 5 fb-1






cross-section in the pb-range.
• Few simple cuts.

- - E<sub>vis</sub> < 400 GeV</li>  $(=E_{CMS}-2M_{\tilde{\chi}_1^0 min LEP}).$
  - 2 charged particles
  - $\bullet$  < 40% of E<sub>vis</sub> < below 30 degrees.
- Simple observable:  $E_{vis}$ : Peak and width gives  $M_{\tilde{e}_{\mathbf{p}}}$  and  $M_{\tilde{\chi}_{1}^{0}}$ .
- See the signal appearing after
  - 1 fb<sup>−1</sup>
  - 5 fb<sup>-1</sup>
  - 25 fb<sup>-1</sup>


#### Visible Energy @ 25 fb-1

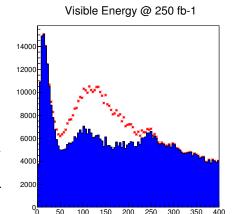




cross-section in the pb-range.
• Few simple cuts.

- - E<sub>vis</sub> < 400 GeV</li>  $(=E_{CMS}-2M_{\tilde{\chi}^0_1 min, LEP}).$
  - 2 charged particles
  - $\bullet$  < 40% of E<sub>vis</sub> < below 30 degrees.
- Simple observable: E<sub>vis</sub>: Peak and width gives  $M_{\tilde{e}_{\mathbf{p}}}$  and  $M_{\tilde{\chi}_{1}^{0}}$ .
- See the signal appearing after
  - 1 fb<sup>-1</sup>
  - 5 fb<sup>-1</sup>
  - 25 fb<sup>-1</sup>
  - 100 fb<sup>-1</sup>




Visible Energy @ 100 fb-1

1000

50



- - E<sub>vis</sub> < 400 GeV</li>  $(=E_{CMS}-2M_{\tilde{\chi}^0_1 min, LEP}).$
  - 2 charged particles
  - $\bullet$  < 40% of E<sub>vis</sub> < below 30 degrees.
- Simple observable:  $E_{vis}$ : Peak and width gives  $M_{\tilde{e}_{\mathbf{p}}}$  and  $M_{\tilde{\chi}_{1}^{0}}$ .
- See the signal appearing after
  - 1 fb<sup>−1</sup>
  - 5 fb<sup>-1</sup>
  - 25 fb<sup>-1</sup>
  - 100 fb<sup>-1</sup>
  - 250 fb<sup>-1</sup>



- So, within months after start-up, we can estimate  $M_{\tilde{e}_R}$  and  $M_{\tilde{\chi}_1^0}$  to within a few GeV.
- Use this knowledge for better selection cuts.
- Probably, we have also seen the  $\tilde{\mu}_R$ .
- $\bullet$  ... and that it has  $\approx$  the same mass. as the  $\tilde{e}_R$

## Nets step



- So, within months after start-up, we can estimate  $M_{\tilde{e}_R}$  and  $M_{\tilde{\chi}_1^0}$  to within a few GeV.
- Use this knowledge for better selection cuts.
- Probably, we have also seen the  $\tilde{\mu}_R$ .
- $\bullet$  ... and that it has  $\approx$  the same mass. as the  $\tilde{e}_R$

## Nets step

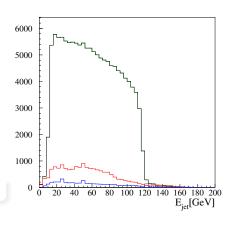


- So, within months after start-up, we can estimate  $M_{\tilde{e}_R}$  and  $M_{\tilde{\chi}_1^0}$  to within a few GeV.
- Use this knowledge for better selection cuts.
- Probably, we have also seen the  $\tilde{\mu}_R$ .
- $\bullet$  ... and that it has  $\approx$  the same mass. as the  $\tilde{e}_R$

## Nets step



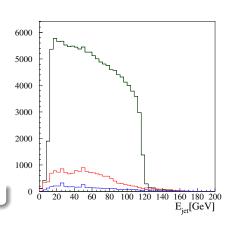
- So, within months after start-up, we can estimate  $M_{\tilde{e}_R}$  and  $M_{\tilde{\chi}_1^0}$  to within a few GeV.
- Use this knowledge for better selection cuts.
- Probably, we have also seen the  $\tilde{\mu}_R$ .
- $\bullet$  ... and that it has  $\approx$  the same mass. as the  $\tilde{e}_R$


## Nets step:



#### Refine cuts:

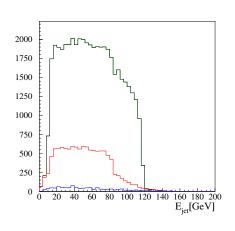
- E<sub>vis</sub> < 300 GeV.</li>
- M<sub>miss</sub> > 250 GeV.
- E below 30 degrees < 10 GeV.</li>
- $\cos \theta_{miss} < 0.95$ .
- Exactly two opposite charged identified e:s.
- $(E_{jet1} + E_{jet2}) \sin \theta_{acop} > 21$ , < 135 GeV.


Efficiency 52 %



#### Refine cuts:

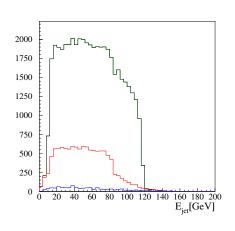
- E<sub>vis</sub> < 300 GeV.</li>
- M<sub>miss</sub> > 250 GeV.
- E below 30 degrees < 10 GeV.</li>
- $\cos \theta_{miss} < 0.95$ .
- Exactly two opposite charged identified e:s.
- $(E_{jet1} + E_{jet2}) \sin \theta_{acop} > 21$ , < 135 GeV.


## Efficiency 52 %



# $\tilde{\mu}_{\mathrm{R}}$ spectrum

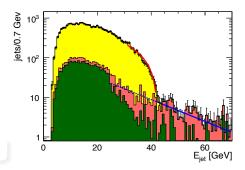
Same cuts, but ask for two  $\mu$ :s instead, ie.:


- $E_{vis} < 300 \text{ GeV}$ .
- M<sub>miss</sub> > 250 GeV.
- E below 30 degrees < 10 GeV.</li>
- $\cos \theta_{miss} < 0.95$ .
- Exactly two opposite charged identified μ:s.
- $(E_{jet1} + E_{jet2}) \sin \theta_{acop} > 21$ , < 135 GeV.
- Note lower cross-section.
- SUSY bck is  $\tilde{\chi}_1^0 \tilde{\chi}_2^0 \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0 \mu \mu$ .



# $\tilde{\mu}_{\mathrm{R}}$ spectrum

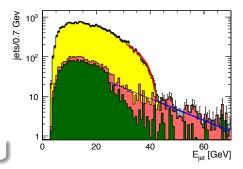
Same cuts, but ask for two  $\mu$ :s instead, ie.:


- $E_{vis} < 300 \text{ GeV}$ .
- M<sub>miss</sub> > 250 GeV.
- E below 30 degrees < 10 GeV.</li>
- $\cos \theta_{miss} < 0.95$ .
- Exactly two opposite charged identified μ:s.
- $(E_{jet1} + E_{jet2}) \sin \theta_{acop} > 21$ , < 135 GeV.
- Note lower cross-section.
- SUSY bck is  $\tilde{\chi}_1^0 \tilde{\chi}_2^0 \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0 \mu \mu$ .



# $\tilde{\tau}_1$ spectrum

- $E_{vis} < 300 \text{ GeV}$ .
- $M_{miss} > 250$  GeV.
- Exactly two opposite charged jets identified w. mass < 2.5 GeV.
- No particle with P > 180 GeV.
- $(E_{jet1} + E_{jet2}) \sin \theta_{acop} < 30$ GeV.


Efficiency 15 %



# $\tilde{\tau}_1$ spectrum

- $E_{vis} < 300 \text{ GeV}$ .
- $M_{miss} > 250 \text{ GeV}$ .
- Exactly two opposite charged jets identified w. mass < 2.5 GeV.
- No particle with P > 180 GeV.
- $(E_{jet1} + E_{jet2}) \sin \theta_{acop} < 30$ GeV.

Efficiency 15 %



- Simplified methods at hadron and lepton machines are different beasts.
- At lepton machines they are quite model independent, as all possible NLSP's can be exploited in a series 2-dim scans
- This is exactly what was done at LEP, so the procedure is known.
- Now being set up for ILC studies.
- Expect to have a rather complete study before the end of the Snowmass process.

 Simplified methods at hadron and lepton machines are different beasts.

At lepton machines they are quite model independent, as all

- possible NLSP's can be exploited in a series 2-dim scans
- This is exactly what was done at LEP, so the procedure is known.
- Now being set up for ILC studies.
- Expect to have a rather complete study before the end of the Snowmass process.

 Simplified methods at hadron and lepton machines are different beasts.

At lepton machines they are quite model independent, as all

- possible NLSP's can be exploited in a series 2-dim scans
- This is exactly what was done at LEP, so the procedure is known.
- Now being set up for ILC studies.
- Expect to have a rather complete study before the end of the Snowmass process.

 Simplified methods at hadron and lepton machines are different beasts.

At lepton machines they are quite model independent, as all

- possible NLSP's can be exploited in a series 2-dim scans
- This is exactly what was done at LEP, so the procedure is known.
- Now being set up for ILC studies.
- Expect to have a rather complete study before the end of the Snowmass process.


- Simplified methods at hadron and lepton machines are different beasts.
- At lepton machines they are quite model independent, as all possible NLSP's can be exploited in a series 2-dim scans
- This is exactly what was done at LEP, so the procedure is known.
- Now being set up for ILC studies.
- Expect to have a rather complete study before the end of the Snowmass process.

 Simplified methods at hadron and lepton machines are different beasts.

At lepton machines they are quite model independent, as all

- possible NLSP's can be exploited in a series 2-dim scans
- This is exactly what was done at LEP, so the procedure is known.
- Now being set up for ILC studies.
- Expect to have a rather complete study before the end of the Snowmass process.

Work in progress. Stay tuned.



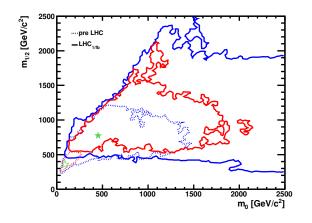
# Thank You!

# Backup

# **BACKUP SLIDES**

- Anomaly in g-2 of the  $\mu$ : Would prefer a not-too-heavy smuon.
- ullet Dark matter : A WIMP of  $\sim$  100 GeV would be required.
- EW symmetry breaking, coupling constant unification: points to NP at or below 1 TeV
- Suppress the SUSY flavour problem (FCNC:s etc): Heavy 1:st & 2:nd generation squarks would be nice ...
- Other low-energy constrains :  $b \to s \gamma$  ,  $b \to \mu \mu, \rho$ -parameter,  $\Gamma(Z)$  ...

- Anomaly in g-2 of the  $\mu$ : Would prefer a not-too-heavy smuon.
- Dark matter : A WIMP of  $\sim$  100 GeV would be required.
- EW symmetry breaking, coupling constant unification: points to NP at or below 1 TeV
- Suppress the SUSY flavour problem (FCNC:s etc): Heavy 1:st & 2:nd generation squarks would be nice ...
- Other low-energy constrains :  $b \to s \gamma$  ,  $b \to \mu \mu, \rho$ -parameter,  $\Gamma(Z)$  ...

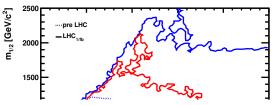

- Anomaly in g-2 of the  $\mu$ : Would prefer a not-too-heavy smuon.
- Dark matter : A WIMP of  $\sim$  100 GeV would be required.
- EW symmetry breaking, coupling constant unification: points to NP at or below 1 TeV
- Suppress the SUSY flavour problem (FCNC:s etc): Heavy 1:st & 2:nd generation squarks would be nice ...
- Other low-energy constrains :  $b \to s \gamma$  ,  $b \to \mu \mu, \rho$ -parameter,  $\Gamma(Z)$  ...

- Anomaly in g-2 of the  $\mu$ : Would prefer a not-too-heavy smuon.
- Dark matter : A WIMP of  $\sim$  100 GeV would be required.
- EW symmetry breaking, coupling constant unification: points to NP at or below 1 TeV
- Suppress the SUSY flavour problem (FCNC:s etc): Heavy 1:st & 2:nd generation squarks would be nice ...
- Other low-energy constrains :  $b \to s \gamma$  ,  $b \to \mu \mu, \rho$ -parameter,  $\Gamma(Z)$  ...

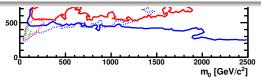
- Anomaly in g-2 of the  $\mu$ : Would prefer a not-too-heavy smuon.
- Dark matter : A WIMP of  $\sim$  100 GeV would be required.
- EW symmetry breaking, coupling constant unification: points to NP at or below 1 TeV
- Suppress the SUSY flavour problem (FCNC:s etc): Heavy 1:st & 2:nd generation squarks would be nice ...
- Other low-energy constrains :  $b \to s \gamma$  ,  $b \to \mu \mu, \rho$ -parameter,  $\Gamma(Z)$  ...

### A New bench-mark point

Remember: Without LHC Sps1a' is the best fit!




(From Mastercode).



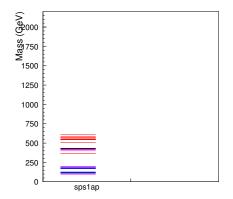

### A New bench-mark point

Remember: Without LHC Sps1a' is the best fit!

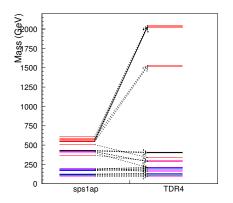


Can we still get all this with SUSY, without contradicting LHC limits ?!




(From Mastercode).




### Can all this be provided by SUSY ?Yes, sure!

### Can all this be provided by SUSY ?Yes, sure!

Can all this be provided by SUSY ?Yes, sure!



### Can all this be provided by SUSY ?Yes, sure!

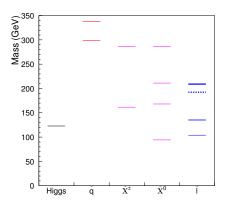


### Can all this be provided by SUSY ?Yes, sure!

Take old ILC favourite benchmark SPS1a, and make the TDR4 point (see Baer&List arXiv:1205.6929v1

#### SPS1a: mSUGRA

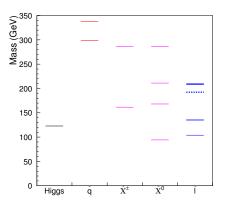
- 5 parameters.
- One gaugino parameter
- One scalar parameter

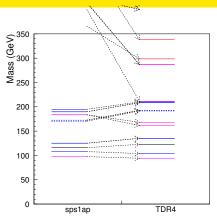

# TDR4: Phenomenological SUSY

- 11 parameters.
- Separate gluino
- Higgs, un-coloured, and coloured scalar parameters separate

Parameters chosen to deliver all constraints,≈ same ILC accessible spectrum ⇒ old analyses still valid!

### Features of TDR 4

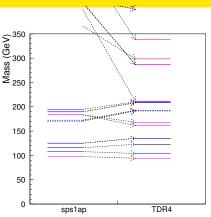

- The  $\tilde{\tau}_1$  is the NLSP.
- For  $\tilde{\tau}_1$ : Small  $\Delta_M$ ,  $\gamma\gamma$  background
- For  $\tilde{\tau}_2$ :  $WW \rightarrow l\nu l\nu$  background  $\Leftrightarrow$  Polarisation.
- $\tilde{\tau}$  NLSP  $\rightarrow \tau$ :s in most SUSY decays  $\rightarrow$  SUSY is background to SUSY.
- For pol=(-1,1):  $\sigma(\tilde{\chi}_2^0\tilde{\chi}_2^0)$  and  $\sigma(\tilde{\chi}_1^+\tilde{\chi}_1^-)$  = several hundred fb and BR(X $\rightarrow$  $\tilde{\tau}$ ) > 50 %. For pol=(1,-1):  $\sigma(\tilde{\chi}_2^0\tilde{\chi}_2^0)$  and  $\sigma(\tilde{\chi}_1^+\tilde{\chi}_1^-)\approx 0$ .






### Features of TDR 4

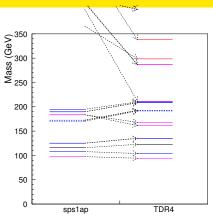
- The  $\tilde{\tau}_1$  is the NLSP.
- For  $\tilde{\tau}_1$ : Small  $\Delta_M$ ,  $\gamma\gamma$  background
- For  $\tilde{\tau}_2$ :  $WW \rightarrow l\nu l\nu$  background  $\Leftrightarrow$  Polarisation.
- $\tilde{\tau}$  NLSP  $\rightarrow \tau$ :s in most SUSY decays  $\rightarrow$  SUSY is background to SUSY.
- For pol=(-1,1):  $\sigma(\tilde{\chi}_2^0\tilde{\chi}_2^0)$  and  $\sigma(\tilde{\chi}_1^+\tilde{\chi}_1^-)$  = several hundred fb and BR(X $\rightarrow$  $\tilde{\tau}$ ) > 50 %. For pol=(1,-1):  $\sigma(\tilde{\chi}_2^0\tilde{\chi}_2^0)$  and  $\sigma(\tilde{\chi}_1^+\tilde{\chi}_1^-)\approx 0$ .






- All bosinos
- *M<sub>h</sub>* OK
- $\tilde{\ell}_L \to \tilde{\chi}^0_0 \ell$  at 30-40 % BR.

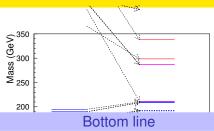
- $\tilde{\chi}_4^0$  and  $\tilde{\chi}_2^\pm$  too heavy
- $\bullet$   $M_h$  too small
- $\tilde{\ell}_L \to \tilde{\chi}_0^0 \ell$  at  $\sim$  95 % BR.






- All bosinos
- *M<sub>h</sub>* OK
- $\tilde{\ell}_L \to \tilde{\chi}^0_0 \ell$  at 30-40 % BR.

- $\tilde{\chi}_4^0$  and  $\tilde{\chi}_2^\pm$  too heavy
- M<sub>h</sub> too small
- $\tilde{\ell}_L \to \tilde{\chi}_0^0 \ell$  at  $\sim 95$  % BR.






- All bosinos
- *M<sub>h</sub>* OK
- $\tilde{\ell}_L \rightarrow \tilde{\chi}_0^0 \ell$  at 30-40 % BR.

- $\tilde{\chi}_4^0$  and  $\tilde{\chi}_2^\pm$  too heavy
- M<sub>h</sub> too small
- $\tilde{\ell}_L \to \tilde{\chi}_0^0 \ell$  at  $\sim$  95 % BR.





Even more open channels

More complicated topologies

We plan to check how close TDR4 is to the "best fit" (with fittino



- All bosinos
- *M<sub>h</sub>* OK
- $\tilde{\ell}_L \rightarrow \tilde{\chi}_0^0 \ell$  at 30-40 % BR.

- $\tilde{\chi}_4^0$  and  $\tilde{\chi}_2^\pm$  too heavy
- M<sub>h</sub> too small
- $\tilde{\ell}_L \to \tilde{\chi}_0^0 \ell$  at  $\sim$  95 % BR.



### **Analysis**

#### Disclaimer

- Very preliminary
- Mostly taken over SPS1a' analyses: Guaranteed to have bad efficiency for heavier states, due to the increase of cascade decays (mostly ignored in Sps1a')

Take over SPS1a' (Phys.Rev.D82:055016,2010, Nicola's thesis,...)



### Lighter sleptons

Use the polarisation (0.8,-0.3) of the data to reduce bosino background. Assumed to be 50 % of all data.

### From decay kinematics:

- $m_{\tilde{\ell}}$  and  $M_{\tilde{\chi}_1^0}$  and end-points of spectrum =  $E_{\ell,min(max)}$ .
- For  $\tilde{\tau}_1$ : other end-point hidden in  $\gamma\gamma$  background:Must get  $M_{\tilde{\chi}_1^0}$  from other sources. ( $\tilde{\mu}$ ,  $\tilde{\epsilon}$ , ...)

#### $m_{\tilde{\ell}}$ also from cross-section:

• 
$$\sigma_{\tilde{\ell}} = A(\theta_{\tilde{\ell}}, \mathcal{P}_{beam}) \times \beta^3/s$$
, so

• 
$$m_{\tilde{\ell}} = E_{beam} \sqrt{1 - (\sigma s/A)^{2/3}}$$
: no  $M_{\tilde{\chi}_1^0}$ !

#### From decay spectra:

•  $\mathcal{P}_{ au}$  from exclusive decay-mode(s): handle on mixing angles  $\theta_{\widetilde{\mathcal{T}}}$  and  $\theta_{\widetilde{\chi}_1^0}$ 



### **Topology selection**

### Take over SPS1a' $\tilde{\tau}$ analysis principle

### $\tilde{\ell}$ properties:

- Only two particles (possibly τ:s:s) in the final state.
- Large missing energy and momentum.
- High Acolinearity, with little correlation to the energy of the τ decay-products.
- Central production.
- No forward-backward asymmetry.
- + anti  $\gamma\gamma$  cuts (see backup)

### Select this by:

- Exactly two jets.
- $N_{ch} < 10$
- Vanishing total charge.
- Charge of each jet =  $\pm$  1,
- $M_{jet} < 2.5 \text{ GeV}/c^2$ ,
- $E_{vis}$  significantly less than  $E_{CMS}$ .
- M<sub>miss</sub> significantly less than M<sub>CMS</sub>.
- No particle with momentum close to E<sub>beam</sub>.



### **Topology selection**

#### Take over SPS1a' $\tilde{\tau}$ analysis principle

### $\tilde{\ell}$ properties:

- Only two particles (possibly τ:s:s) in the final state.
- Large missing energy and momentum.
- High Acolinearity, with little correlation to the energy of the τ decay-products.
- Central production.
- No forward-backward asymmetry.
- + anti  $\gamma\gamma$  cuts (see backup)

### Select this by:

- Exactly two jets.
- $N_{ch} < 10$
- Vanishing total charge.
- Charge of each jet =  $\pm$  1,
- $M_{jet} < 2.5 \text{ GeV}/c^2$ ,
- $E_{vis}$  significantly less than  $E_{CMS}$ .
- M<sub>miss</sub> significantly less than M<sub>CMS</sub>.
- No particle with momentum close to E<sub>beam</sub>.



### **Topology selection**

#### Take over SPS1a' $\tilde{\tau}$ analysis principle

### $\tilde{\ell}$ properties:

- Only two particles (possibly τ:s:s) in the final state.
- Large missing energy and momentum.
- High Acolinearity, with little correlation to the energy of the τ decay-products.
- Central production.
- No forward-backward asymmetry.
- + anti  $\gamma\gamma$  cuts (see backup)

### Select this by:

- Exactly two jets.
- $N_{ch} < 10$
- Vanishing total charge.
- Charge of each jet =  $\pm$  1,
- $M_{jet} < 2.5 \text{ GeV}/c^2$ ,
- $E_{vis}$  significantly less than  $E_{CMS}$ .
- M<sub>miss</sub> significantly less than M<sub>CMS</sub>.
- No particle with momentum close to E<sub>beam</sub>.



### $\tilde{\mu}_{R}$ threshold scan

From these spectra, we can estimate  $M_{{\rm \widetilde e}_R}$ ,  $M_{{\rm \widetilde \mu}_R}$  and  $M_{{\rm \widetilde \chi}_1^0}$  to < 1 GeV.

### $\tilde{\mu}_R$ threshold scan

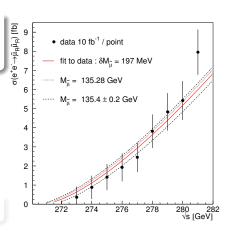
From these spectra, we can estimate  $M_{\tilde{e}_R}$ ,  $M_{\tilde{\mu}_R}$  and  $M_{\tilde{\chi}_1^0}$  to < 1 GeV.

So: Next step is  $\emph{M}_{\tilde{\mu}_{R}}$  from threshold:

- 10 points, 10 fb $^{-1}$ /point.
- Luminosity  $\propto E_{CMS}$ , so this is  $\Leftrightarrow$  170 fb<sup>-1</sup> @  $E_{CMS}$ =500 GeV.

Error on  $M_{\widetilde{\mu}_{\mathrm{R}}}$  = 197 Mev




### $\tilde{\mu}_{R}$ threshold scan

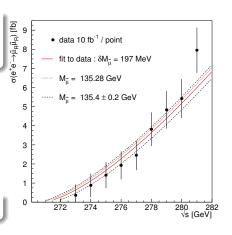
From these spectra, we can estimate  $M_{\tilde{e}_R}$ ,  $M_{\tilde{\mu}_R}$  and  $M_{\tilde{\chi}_1^0}$  to < 1 GeV.

So: Next step is  $M_{\widetilde{\mu}_R}$  from threshold:

- 10 points, 10 fb $^{-1}$ /point.
- Luminosity  $\propto E_{CMS}$ , so this is  $\Leftrightarrow$  170 fb<sup>-1</sup> @  $E_{CMS}$ =500 GeV.

Error on  $M_{\widetilde{\mu}_{\rm R}}$  = 197 MeV

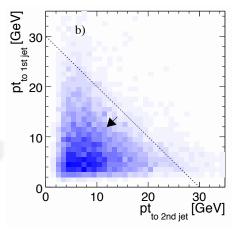



### $\tilde{\mu}_{R}$ threshold scan

From these spectra, we can estimate  $M_{\tilde{e}_R}$ ,  $M_{\tilde{\mu}_R}$  and  $M_{\tilde{\chi}_1^0}$  to < 1 GeV.

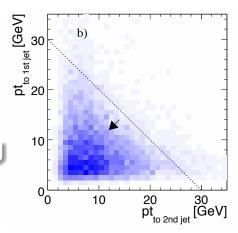
So: Next step is  $M_{\widetilde{\mu}_R}$  from threshold:

- 10 points, 10 fb $^{-1}$ /point.
- Luminosity  $\propto E_{CMS}$ , so this is  $\Leftrightarrow$  170 fb<sup>-1</sup> @  $E_{CMS}$ =500 GeV.


Error on  $M_{\tilde{\mu}_{\rm R}}$  = 197 MeV



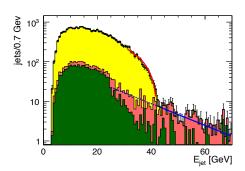
- $E_{vis} < 300 \text{ GeV}$ .
- $M_{miss} > 250 \text{ GeV}$ .
- Exactly two opposite charged jets identified w. mass < 2.5 GeV.
- No particle with P > 180 GeV.
- $(E_{jet1} + E_{jet2}) \sin \theta_{acop} < 30$ GeV.


- $E_{vis} < 300 \text{ GeV}$ .
- $M_{miss} > 250 \text{ GeV}$ .
- Exactly two opposite charged jets identified w. mass < 2.5 GeV.
- No particle with P > 180 GeV.
- $(E_{jet1} + E_{jet2}) \sin \theta_{acop} < 30$ GeV.

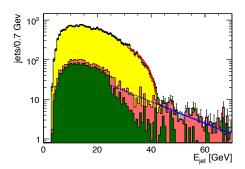
- $E_{vis} < 300 \text{ GeV}$ .
- M<sub>miss</sub> > 250 GeV.
- Exactly two opposite charged jets identified w. mass < 2.5 GeV.
- No particle with P > 180 GeV.
- $(E_{jet1} + E_{jet2}) \sin \theta_{acop} < 30$ GeV.






- E<sub>vis</sub> < 300 GeV.</li>
- M<sub>miss</sub> > 250 GeV.
- Exactly two opposite charged jets identified w. mass < 2.5 GeV.
- No particle with P > 180 GeV.
- $(E_{jet1} + E_{jet2}) \sin \theta_{acop} < 30$ GeV.





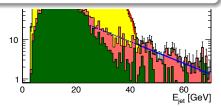

- Only the upper end-point is relevant.
- Background subtraction:
  - Important SUSY background,but region above 45 GeV is signal free. Fit exponential and extrapolate.
- Fit line to (data-background fit).

- Only the upper end-point is relevant.
- Background subtraction:
  - Important SUSY background,but region above 45 GeV is signal free. Fit exponential and extrapolate.
- Fit line to (data-background fit).



- Only the upper end-point is relevant.
- Background subtraction:
  - Important SUSY background,but region above 45 GeV is signal free. Fit exponential and extrapolate.
- Fit line to (data-background fit).

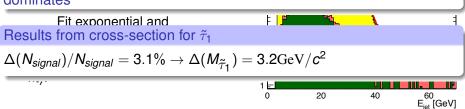



 Only the upper end-point is relevant.

#### Results for $\tilde{\tau}_1$

 $M_{\widetilde{\tau}_1}=107.73^{+0.03}_{-0.05} {\rm GeV}/c^2\otimes 1.3\Delta(M_{\widetilde{\chi}_1^0})$  The error from  $M_{\widetilde{\chi}_1^0}$  largely dominates

Fit exponential and extrapolate.


• Fit line to (data-background fit).



 Only the upper end-point is relevant.

#### Results for $\tilde{\tau}_1$

 $M_{\widetilde{\tau}_1}=107.73^{+0.03}_{-0.05} {\rm GeV}/c^2\otimes 1.3\Delta(M_{\widetilde{\chi}_1^0})$  The error from  $M_{\widetilde{\chi}_1^0}$  largely dominates



# First look at Heavier sleptons ( $\tilde{\mu}_{L}$ )

#### Remember

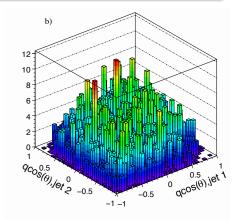
demanding exactly 2 objects kills 90 % of the signal in TDR4, due to cascaded decays!

- Same cuts as for  $\tilde{\mu}_R$ , and
- anti-WW likelihood, take over from SPS1a'
- select using other particle:  $p(other \mu) > 120 \text{ GeV}.$

Efficiency 1.5 % (!), S/B = 0.2.

- $S/\sqrt{B}=5.0$  for LR,
- $S/\sqrt{B}=2.8$  for RL.




# First look at Heavier sleptons ( $\tilde{\mu}_{\rm L}$ )

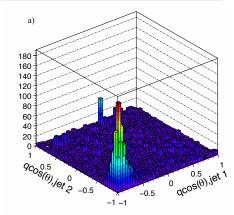
#### Remember

demanding exactly 2 objects kills 90 % of the signal in TDR4, due to cascaded decays!

- Same cuts as for  $\tilde{\mu}_R$ , and
- anti-WW likelihood, take over from SPS1a'
- select using other particle:  $p(other \mu) > 120 \text{ GeV}.$

Efficiency 1.5 % (!), S/B = 0.2. •  $S/\sqrt{B} = 5.0$  for LR,




# First look at Heavier sleptons ( $\tilde{\mu}_{\rm L}$ )

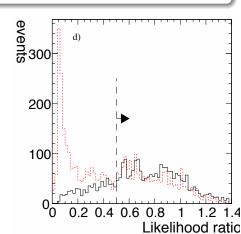
#### Remember

demanding exactly 2 objects kills 90 % of the signal in TDR4, due to cascaded decays!

- Same cuts as for  $\tilde{\mu}_R$ , and
- anti-WW likelihood, take over from SPS1a'
- select using other particle:  $p(other \mu) > 120 \text{ GeV}.$

Efficiency 1.5 % (!), S/B = 0.2. •  $S/\sqrt{B} = 5.0$  for LR, •  $S/\sqrt{B} = 2.8$  for RL.




# First look at Heavier sleptons ( $\tilde{\mu}_{L}$ )

#### Remember

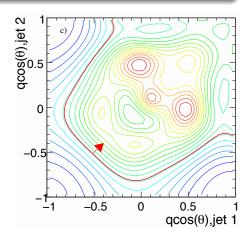
demanding exactly 2 objects kills 90 % of the signal in TDR4, due to cascaded decays!

- Same cuts as for  $\tilde{\mu}_R$ , and
- anti-WW likelihood, take over from SPS1a'
- select using other particle: p(other μ) > 120 GeV.

Efficiency 1.5 % (!), S/B = 0.2. •  $S/\sqrt{B} = 5.0$  for LR, •  $S/\sqrt{B} = 2.8$  for RL.



# First look at Heavier sleptons ( $\tilde{\mu}_{\rm L}$ )


#### Remember

demanding exactly 2 objects kills 90 % of the signal in TDR4, due to cascaded decays!

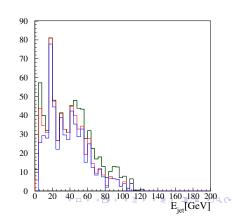
- Same cuts as for  $\tilde{\mu}_R$ , and
- anti-WW likelihood, take over from SPS1a'
- select using other particle: p(other μ) > 120 GeV.

Efficiency 1.5 % (!), S/B = 0.2.

•  $S/\sqrt{B}$ =2.8 for RL.



# First look at Heavier sleptons ( $\tilde{\mu}_{L}$ )


#### Remember

demanding exactly 2 objects kills 90 % of the signal in TDR4, due to cascaded decays!

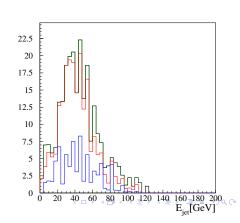
- Same cuts as for  $\tilde{\mu}_R$ , and
- anti-WW likelihood, take over from SPS1a'
- select using other particle: p(other μ) > 120 GeV.

Efficiency 1.5 % (!), S/B = 0.2.

- $S/\sqrt{B}$ =5.0 for LR,
- $S/\sqrt{B}$ =2.8 for RL.



# First look at Heavier sleptons ( $\tilde{\mu}_{L}$ )


#### Remember

demanding exactly 2 objects kills 90 % of the signal in TDR4, due to cascaded decays!

- Same cuts as for  $\tilde{\mu}_R$ , and
- anti-WW likelihood, take over from SPS1a'
- select using other particle: p(other μ) > 120 GeV.

Efficiency 1.5 % (!), S/B = 0.2.

- $S/\sqrt{B}$ =5.0 for LR,
- $S/\sqrt{B}$ =2.8 for RL.

